Расчет отопления в частном доме

Расчет мощности системы отопления по объему жилья

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м2, комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м3.

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Теплая зима. Холода отсутствуют или очень слабы От 0,7 до 0,9 Краснодарский край, побережье Черного моря
Умеренная зима 1,2 Средняя полоса России, Северо-Запад
Суровая зима с достаточно сильными холодами 1,5 Сибирь
Экстремально холодная зима 2,0 Чукотка, Якутия, регионы Крайнего Севера

Расчет мощности системы отопления по объему жилья

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому

Калькулятор — расчет объема системы отопления

Перейти к расчётам
 

Укажите запрашиваемые данные и нажмите «РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ
Объем теплообменника котла , литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК
Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы
Тип радиатора:
– чугунные МС-140 с межосевым 500 мм
– чугунные МС-140 с межосевым 300 мм
– чугунные ЧМ-2 с межосевым 500 мм
– чугунные ЧМ
-2 с межосевым 300 мм
– алюминиевые с межосевым 500 мм
– алюминиевые с межосевым 350 мм
– биметаллические с межосевым 500 мм
– биметаллические с межосевым 350 мм

Общее количество секций

Неразборные радиаторы и конвекторы
Объем прибора по паспорту

Количество приборов
Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)
Стальные трубы ВГП

Ø ½ “, метров

Ø ¾ “, метров

Ø 1 “, метров

Ø 1¼ “, метров

Ø 1½ “, метров

Ø 2 “, метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)
Наличие дополнительных приборов и устройств:
– нет
– есть

Суммарный объем дополнительных элементов системы

Как рассчитать оптимальное количество и объемы теплообменников

При расчёте количества необходимых радиаторов, следует учитывать из какого материала они произведены. Рынок сейчас предлагает три вида металлических радиаторов:

  • Чугун,

  • Алюминий,

  • Биметаллический сплав,

Все они имеют свои особенности. Чугун и алюминий имеют одинаковый показатель теплоотдачи, но при этом алюминий быстро остывает, а чугун медленно нагревается, но долго сохраняет тепло. Биметаллические радиаторы быстро нагреваются, но остывают значительнее медленнее алюминиевых.

При расчете количества радиаторов также следует учитывать и другие нюансы:

  • теплоизоляция пола и стен помогает сохранить до 35% тепла,

  • угловая комната прохладнее других и требует большего количества радиаторов,

  • использование стеклопакетов на окнах сохраняет 15% теплоэнергии,

  • через крышу «уходит» до 25% теплоэнергии.

Количество радиаторов отопления и секций в них зависит от многих факторов

В соответствии с нормами СНиП, на обогрев 1 м3 требуется 100 Вт тепла. Следовательно, 50 м3 потребуют 5000 Вт. Если биметаллический прибор на 8 секций выделяет 120 Вт, то с помощью простого калькулятора считаем: 5000 : 120 = 41,6. После округления в большую сторону, получаем 42 радиатора.

Однако в частном доме температура регулируется самостоятельно. Считается, что одна батарея выделяет 150 Вт тепла. Пересчитываем и получаем 5000 : 150 = 33,3. То есть понадобится 34 радиатора.

Можно воспользоваться примерной формулой расчета секций радиатора:

N*= S/P *100

Значок (*) показывает, что дробная часть округляется по общим математическим правилам, N – количество секций, S – площадь комнаты в м2, а P – теплоотдача 1 секции в Вт.

Тепловой расчет для приборов отопления

Метод теплового расчета являет собой определение площади поверхности каждого отдельного отопительного прибора, который отдает в помещение тепло. Расчет тепловой энергии на отопление в данном случае учитывает максимальный уровень температуры теплоносителя, который предназначен для тех отопительных элементов, для которых и проводится теплотехнический расчет системы отопления. То есть, в случае если теплоноситель – вода, то берется средняя ее температура в отопительной системе. При этом учитывается расход теплоносителя. Точно также, в случае если теплоносителем является пар, то расчет тепла на отопление использует значение высшей температуры пара при определенном уровне давления в отопительном приборе.

Радиаторы — главный прибор отопления

Таблицы для расчета тепловых потерь дома

Таблица «К — коэффициент теплопередачи»:

Конструкция

Толщина конструкции, мм

К, Вт/ (м2 х °С)

Кирпичная стена (на холодном растворе с внутренней штукатуркой) толщиной в 1,5 кирпича 395 1,5
в 2 кирпича 525 1,24
в 2,5 кирпича 655 1,04
Рубленые деревянные стены из бревен диаметром, мм 200 160 1,02
240 200 0,85
Брусчатые деревянные стены 150 1,0
200 0,76
Чердачное деревянное перекрытие 100 1,0
Двойные окна 2,68
Двойные двери 2,33

Таблица « n — коэффициент уменьшения»:

Наименование ограждения

n

Полы на грунте и лагах 1,0
Чердачные перекрытия при стальной, черепичной или асбестоцементной кровлях при разреженной обрешетке и бесчердачные покрытия с венти­лируемыми продухами 0,9
То же для перекрытий по сплошному настилу 0,8
Чердачные перекрытия при кровлях из рулонных материалов 0,75
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, сообщающиеся с наружным воздухом 0,7
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, не сообщающиеся с наружным воздухом 0,4
Перекрытия над подпольями, расположенными ниже уровня земли 0,4
Перекрытия над подпольями, расположенными выше уровня земли 0,75
Перекрытия над неотапливаемыми подвалами, расположенными ниже уровня грунта или выступающие на высоту до 1 м 0,6

Таблица « Значения R0 и 1/R0»:

Конструкция

Толщина

R0, ккал/(м2 х ч х °С)

1/R0, ккал/ (м2 х ч х °С)

в кирпичах

в мм

Стены
Сплошная кладка из обыкновенного кир­пича 0,5 135 0,38 2,64
1 265 0,57 1,76
1,5 395 0,76 1,32
2 525 0,94 1,06
2,5 655 1,13 0,89
Сплошная кладка из обыкновенного кирпича с воздушной прослойкой ( = 50 мм) в перевязку через каж­дые 6 рядов 1,5 435 0,9 1,11
2 565 1,09 0,92
2,5 695 1,28 0,78
Сплошная кладка из дырчатого кирпича 1,5 395 0,89 1,12
2 525 1,2 0,89
2,5 655 1,4 0,71
Кирпичная кладка с термоизоляционной засыпкой 1,5 395 1,03 0,97
2 525 1,49 0,67
Деревянные рубленые 200 1,33 0,75
220 1,45 0,68
240 1,56 0,64
Брусчатые 150 1,18 0,85
180 1,28 0,78
200 1,32 0,76
Чердачные перекрытия
Железо-бетонные из сборных ребристых плит с утеплителем 100 0,69 1,45
150 0,89 1,12
200 1,09 0,92
250 1,29 0,77

Перед тем как рассчитать теплопотери дома , помните, что добавочные потери тепла зависят от расположения здания на местности, от ориентации стен по сторонам света, скорости ветра и инфильтрации. Если конструктивные элементы дома обращены на север, восток, северо-восток и северо-запад, дополнительные потери составят 10 %, а если на запад или на юго-восток — 5 %. Расход тепла для нагрева воздуха в помещении можно найти по формуле: Q = F(пл.) х (tв — tн).

В ней используются величины:

  • F — площадь пола помещения (в м2);
  • tв- tн — внутренняя и наружная температура.

Помимо вышеизложенных вычислений, следует уменьшить теплопотери на величину бытовых тепловыделений. Бытовые тепловыделения определяются из расчета 21 Вт на 1 м2 площади пола.

В итоге для определения теплопроизводительности системы отопления следует: вычислить основные и дополнительные теплопотери, суммировать их и вычесть величину, которая характеризует бытовые тепловыделения.

Очень точный расчет радиаторов отопления

Выше мы привели в пример очень простой расчет количества радиаторов отопления на площадь. Он не учитывает многие факторы, такие как качество теплоизоляции стен, вид остекления, минимальная наружная температура и многие другие. Пользуясь упрощенными вычислениями, мы можем наделать ошибок, в результате чего некоторые комнаты получатся холодными, а некоторые – слишком жаркими. Температура поддается коррекции с помощью запорных кранов, но лучше всего предусмотреть все заранее – хотя бы ради экономии материалов.

Если во время строительства своего дома вы уделили достойное внимание его утеплению, то в дальнейшем вы хорошо сэкономите на отоплении. Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты

Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85

Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты. Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85.

Стены в доме выложены в два кирпича или в их конструкции предусмотрен утеплитель? Тогда применяем коэффициент 1,0. Если обеспечить дополнительную теплоизоляцию, можно смело использовать понижающий коэффициент 0,85 – расходы на обогрев уменьшатся. Если теплоизоляции нет, применяем повышающий коэффициент 1,27.

Обратите внимание, что обогрев домовладения с одинарными окнами и плохой теплоизоляцией приводит к большим тепловым (и денежным) потерям. Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон

В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9

Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон. В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9.

Высота потолков – не менее важный параметр. Применяем здесь следующие коэффициенты:

Таблица расчета количества секций радиатора отопление в зависимости от площади помещения и высоты потолков.

За потолком находится чердак или еще одна жилая комната? И здесь мы применяем дополнительные коэффициенты. Если наверху отапливаемый чердак (или с утеплением), умножаем мощность на 0,9, а если жилое помещение – на 0,8. За потолком обычный неотапливаемый чердак? Применяем коэффициент 1,0 (или просто не берем его в расчет).

После потолков примемся за стены – вот коэффициенты:

  • одна наружная стена — 1,1;
  • две наружные стены (угловая комната) – 1,2;
  • три наружные стены (последняя комната в вытянутом доме, хате) – 1,3;
  • четыре наружные стены (однокомнатный домик, хозпостройка) – 1,4.

Также в расчет берется средняя температура воздуха в самый холодный зимний период (тот самый региональный коэффициент):

  • холода до –35 °C – 1,5 (очень большой запас, позволяющий не замерзнуть);
  • морозы до –25 °C – 1,3 (подходит для Сибири);
  • температура до –20 °C – 1,1 (средняя полоса России);
  • температура до –15 °C – 0,9;
  • температура до –10 °C – 0,7.

Последние два коэффициента используются в жарких южных регионах. Но даже тут принято оставлять солидный запас на случай холодов или специально для теплолюбивых людей .

Получив итоговую тепловую мощность, необходимую для обогрева выбранного помещения, следует разделить ее на теплоотдачу одной секции. В результате мы получим требуемое количество секций и сможем отправиться в магазин

Обратите внимание, что данные расчеты предусматривают базовую мощность обогрева в размере 100 Вт на 1 кв. м

Если вы боитесь ошибиться в расчетах, обратитесь за помощью к профильным специалистам. Они выполнят максимально точные расчеты и вычислят требуемую для обогрева тепловую мощность.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Особенности подбора циркуляционного насоса

Подбирается насос по двум критериям:

  1. Количеству перекаченной жидкости, выраженной в метрах кубических за час (м³/ч).
  2. Напору, выраженному в метрах (м).

С напором, все более или менее понятно,- это высота, на которую должна быть поднята жидкость и измеряется с самой низкой до самой высокой точки или до следующего насоса, в том случае, если в проекте, он предусмотрен не один.

Объем расширительного бака

Всем известно, что жидкость при нагревании имеет свойство увеличиваться в объеме. Чтобы отопительная система не была похожа на бомбу и не текла по всем швам, существует расширительный бак, в который собирается вытесненная вода из системы.

Какого объема следует приобрести или изготовить бак?

Все просто, зная физические характеристики воды.

Рассчитанный объем теплоносителя в системе умножаем на 0,08. Например, для теплоносителя на 100 л, расширительный бачок будет объемом 8 л.

О количестве перекаченной жидкости поговорим подробней

Расход воды в системе отопления считается по формуле:

G = Q / (c * (t2 — t1)), где:

  • G – расход воды в системе отопления, кг/сек;
  • Q – количество тепла, компенсирующее теплопотери, Вт;
  • с – удельная теплоемкость воды, эта величина известна и равна 4200 Дж/кг*ᵒС (учтите, что любые другие теплоносители имеют худшие показатели по сравнению с водой);
  • t2 – температура теплоносителя поступающего в систему, ᵒС;
  • t1 – температура теплоносителя на выходе из системы, ᵒС;

Рекомендация! Для комфортного проживания дельта температуры носителя тепла на входе должна составлять 7-15 градусов. Температура пола в системе «теплый пол» не должна быть более 29 С. Поэтому придется для себя уяснить, какой вид отопления будет монтироваться в доме: будут ли стоять батареи, «теплый пол» или комбинация из нескольких видов.

Результат этой формулы даст расход теплоносителя за секунду времени для восполнения теплопотерь, далее этот показатель переводится в часы.

Совет! Скорее всего, температура в процессе эксплуатации в зависимости от обстоятельств и сезона будет разниться, поэтому лучше сразу к этому показателю добавить 30% запаса.

Рассмотрим показатель расчетное количество тепла, необходимое для компенсации тепловых потерь.

Пожалуй, это самый сложный и важный критерий, требующий инженерных знаний, к которому надо подойти ответственно.

Если это частный дом, то показатель может варьироваться от 10-15 Вт/м² (такие показатели характерны для «пассивных домов») до 200 Вт/м² и более (если это тонкая стена с отсутствующим или недостаточным утеплением).

На практике строительные и торговые организации за основу принимают показатель теплопотерь — 100 Вт/м².

Рекомендация: просчитайте этот показатель для конкретного дома, в котором будет устанавливаться или реконструироваться система отопления. Для этого используются калькуляторы теплопотерь, при этом отдельно считаются потери для стен, крыш, окон, пола. Эти данные дадут возможность узнать, сколько физически отдается тепла домом в окружающую среду в конкретном регионе со своими климатическими режимами.

Рассчитанную цифру потерь умножаем на площадь дома и затем подставляем в формулу расхода воды.

Теперь следует разобраться с таким вопросом, как расход воды в системе отопления многоквартирного дома.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector