Самодельная муфельная электрическая печь (малая)

Содержание:

Алгоритм расчёта для однофазных установок

Расчёт спирали из нихрома следует проводить поэтапно, используя начальные сведения о нагревателе: необходимая мощность и марка нихрома.

Мощность одной секции:

Рс = Р/ (mn)

P — мощность установки, Вт;

m — количество фаз, для однофазной m = 1;

n — число секций в одной фазе, для установок мощностью около 1 квт n = 1.

Рабочий ток одной секции нагревателя:

Ic = P с/(Un)

U — напряжение сети, для однофазных установок U = 220 в

Расчётная температура проволоки:

θр = θд/(Км Кс)

θд — допустимая рабочая температура, выбирается из таблицы 1 в зависимости от материала, °C.

Таблица 1 — Параметры материалов для электрических нагревателей.

Материал Удельное сопротивление при 20 °C, x10-6Ом·м Температурный коэффициент сопротивления, x10— 6 °C -1 Допустимая рабочая температура, °C Температура плавления, °C
Нихром двойной (Х20Н80-Н) 1,1 16,5 1200 1400
Нихром тройной (Х15Н60-Н) 1,1 16,3 1100 1390

Км — коэффициент монтажа, выбирают из таблицы 2 в зависимости от конструктивного исполнения.

Таблица 2 — Коэффициент монтажа для некоторых видов конструкций нагревателей в спокойном потоке воздуха.

Конструктивное исполнение нагревателя Км
Провод при горизонтальном размещении 1,0
Спираль из провода без тепловой изоляции 0,8 — 0,9
Спираль из провода на огнеупорном каркасе 0,7
Провод на огнеупорном каркасе 0,6 — 0,7
Нагревательные сопротивления между двумя слоями тепловой изоляции 0,5
Нагревательные сопротивления с хорошей тепловой изоляцией 0,3 — 0,4

Роль коэффициента монтажа в том, что он даёт возможность учитывать повышение температуры нагревателя в реальных условиях по сравнению с данными справочной таблицы.

Кс — коэффициент окружающей среды, определяется из таблицы 3.

Таблица 3 — Коэффициент поправки на некоторые условия окружающей среды.

Условия окружающей среды Кс
Спираль из провода в потоке воздуха со скоростью движения, м /с  
3 1,8
5 2,1
10 3,1
Нагревательный элемент в неподвижной воде 2,5
Нагревательный элемент в потоке воды 3,0−3,5

Диаметр d, мм и площадь поперечного сечения S, мм 2 выбирается по рабочему току и расчётной температуре из таблицы 4

Таблица 4 — Допустимая нагрузка на нихромовую проволоку при 20 °C, подвешенную в спокойном воздухе горизонтально.

Длина проволоки одной секции:

L = (U ф2S*10-6)/(ρ 20 Рс x103)

ρ 20 — удельное сопротивление при температуре 20 °C, выбирается из таблицы 1;

α — температурный коэффициент сопротивления, определяется из соответствующего столбца в таблице 1.

Диаметр спирали:

D = (6…10) d, мм.

Определяем шаг спирали:

h = (2…4) d, мм

Шаг спирали влияет на производительность работы. При его больших значениях теплоотдача увеличивается.

Количество витков спирали

W = (lx103)/ (√h2+(πD)2)

Длина спирали:

L = h W x10-3

Как рассчитать нагрев нихрома?

Электрическое сопротивление — это одна из самых важных характеристик нихрома.

Оно определяется многими факторами, в частности электрическое сопротивление нихрома зависит от размеров проволоки или ленты, марки сплава.

Общая формула для активного сопротивления имеет вид:

R = ρ · l / S

R — активное электрическое сопротивление (Ом), ρ- удельное электрическое сопротивление (Ом·мм), l- длина проводника (м), S — площадь сечения (мм2)

Значения электрического сопротивления для 1 м нихромовой проволоки Х20Н80

1 Ø 0,1 137,00
2 Ø 0,2 34,60
3 Ø 0,3 15,71
4 Ø 0,4 8,75
5 Ø 0,5 5,60
6 Ø 0,6 3,93
7 Ø 0,7 2,89
8 Ø 0,8 2,2
9 Ø 0,9 1,70
10 Ø 1,0 1,40
11 Ø 1,2 0,97
12 Ø 1,5 0,62
13 Ø 2,0 0,35
14 Ø 2,2 0,31
15 Ø 2,5 0,22
16 Ø 3,0 0,16
17 Ø 3,5 0,11
18 Ø 4,0 0,087
19 Ø 4,5 0,069
20 Ø 5,0 0,056
21 Ø 5,5 0,046
22 Ø 6,0 0,039
23 Ø 6,5 0,0333
24 Ø 7,0 0,029
25 Ø 7,5 0,025
26 Ø 8,0 0,022
27 Ø 8,5 0,019
28 Ø 9,0 0,017
29 Ø 10,0 0,014

Значения электрического сопротивления для 1 м нихромовой ленты Х20Н80

1 0,1×20 2 0,55
2 0,2×60 12 0,092
3 0,3×2 0,6 1,833
4 0,3×250 75 0,015
5 0,3×400 120 0,009
6 0,5×6 3 0,367
7 0,5×8 4 0,275
8 1,0×6 6 0,183
9 1,0×10 10 0,11
10 1,5×10 15 0,073
11 1,0×15 15 0,073
12 1,5×15 22,5 0,049
13 1,0×20 20 0,055
14 1,2×20 24 0,046
15 2,0×20 40 0,028
16 2,0×25 50 0,022
17 2,0×40 80 0,014
18 2,5×20 50 0,022
19 3,0×20 60 0,018
20 3,0×30 90 0,012
21 3,0×40 120 0,009
22 3,2×40 128 0,009

Расчет нихромовой спирали

При намотке спирали из нихрома для нагревательных приборов эту операцию зачастую выполняют «на глазок», а затем, включая спираль в сеть, по нагреву нихромового провода подбирают требующееся количество витков. Обычно такая процедура занимает много времени, да и нихром расходуется попусту.

Чтобы рационализировать эту работу при использовании нихромовой спирали на напряжение 220 В, предлагаю воспользоваться данными приведенными в таблице, из расчета, что удельное сопротивление нихрома = (Ом · мм2 / м) C.

С ее помощью можно быстро определить длину намотки виток к витку в зависимости от толщины нихромового провода и диаметра стержня, на который наматывается нихромовая спираль.

Пересчитать длину спирали из нихрома на другое напряжение нетрудно, использовав простую математическую пропорцию.

Длина нихромовой спирали в зависимости от диаметра нихрома и диаметра стержня

1,5 49 1,5 59 1,5 77 2 64 2 76 2 84 3 68 3 78
2 30 2 43 2 68 3 46 3 53 3 64 4 54 4 72
3 21 3 30 3 40 4 36 4 40 4 49 5 46 6 68
4 16 4 22 4 28 5 30 5 33 5 40 6 40 8 52
5 13 5 18 5 24 6 26 6 30 6 34 8 31
6 20 8 22 8 26 10 24

Например, требуется определить длину нихромовой спирали на напряжение 380 В из провода толщиной 0,3 мм, стержень для намотки Ø 4 мм. Из таблицы видно, что длина такой спирали на напряжение 220 В будет равна 22 см. Составим простое соотношение:

220 В — 22 см

380 В — Х см

тогда:

X = 380 · 22 / 220 = 38 см

Намотав нихромовую спираль, подключите ее, не обрезая, к источнику напряжения и убедитесь в правильности намотки. У закрытых спиралей длину намотки увеличивают на 1/3 значения, приведенного в таблице.

Расчет массы нихрома Х20Н80 (проволока и лента)

В данной таблице приведена теоретическая масса 1 метра нихромовой проволоки и ленты. Она изменяется в зависимости от размеров продукции.

Ø 0,4 8,4 0,126 0,001
Ø 0,5 8,4 0,196 0,002
Ø 0,6 8,4 0,283 0,002
Ø 0,7 8,4 0,385 0,003
Ø 0,8 8,4 0,503 0,004
Ø 0,9 8,4 0,636 0,005
Ø 1,0 8,4 0,785 0,007
Ø 1,2 8,4 1,13 0,009
Ø 1,4 8,4 1,54 0,013
Ø 1,5 8,4 1,77 0,015
Ø 1,6 8,4 2,01 0,017
Ø 1,8 8,4 2,54 0,021
Ø 2,0 8,4 3,14 0,026
Ø 2,2 8,4 3,8 0,032
Ø 2,5 8,4 4,91 0,041
Ø 2,6 8,4 5,31 0,045
Ø 3,0 8,4 7,07 0,059
Ø 3,2 8,4 8,04 0,068
Ø 3,5 8,4 9,62 0,081
Ø 3,6 8,4 10,2 0,086
Ø 4,0 8,4 12,6 0,106
Ø 4,5 8,4 15,9 0,134
Ø 5,0 8,4 19,6 0,165
Ø 5,5 8,4 23,74 0,199
Ø 5,6 8,4 24,6 0,207
Ø 6,0 8,4 28,26 0,237
Ø 6,3 8,4 31,2 0,262
Ø 7,0 8,4 38,5 0,323
Ø 8,0 8,4 50,24 0,422
Ø 9,0 8,4 63,59 0,534
Ø 10,0 8,4 78,5 0,659
1 x 6 8,4 6 0,050
1 x 10 8,4 10 0,084
0,5 x 10 8,4 5 0,042
1 x 15 8,4 15 0,126
1,2 x 20 8,4 24 0,202
1,5 x 15 8,4 22,5 0,189
1,5 x 25 8,4 37,5 0,315
2 x 15 8,4 30 0,252
2 x 20 8,4 40 0,336
2 x 25 8,4 50 0,420
2 x 32 8,4 64 0,538
2 x 35 8,4 70 0,588
2 x 40 8,4 80 0,672
2,1 x 36 8,4 75,6 0,635
2,2 x 25 8,4 55 0,462
2,2 x 30 8,4 66 0,554
2,5 x 40 8,4 100 0,840
3 x 25 8,4 75 0,630
3 x 30 8,4 90 0,756
1,8 x 25 8,4 45 0,376
3,2 x 32 8,4 102,4 0,860

Расчет массы вольфрамовой проволоки

8 0,008 0,19 0,0010 0,97 1031,32
9 0,009 0,25 0,0012 1,23 814,87
10 0,01 0,30 0,0015 1,52 660,04
11 0,011 0,37 0,0018 1,83 545,49
12 0,012 0,44 0,0022 2,18 458,36
13 0,013 0,51 0,0026 2,56 390,56
14 0,014 0,59 0,0030 2,97 336,76
15 0,015 0,68 0,0034 3,41 293,35
16 0,016 0,78 0,0039 3,88 257,83
17 0,017 0,88 0,0044 4,38 228,39
18 0,018 0,98 0,0049 4,91 203,72
19 0,019 1,09 0,0055 5,47 182,84
20 0,02 1,21 0,0061 6,06 165,01
30 0,03 2,73 0,0136 13,64 73,34
40 0,04 4,85 0,0242 24,24 41,25
50 0,05 7,58 0,0379 37,88 26,40
60 0,06 10,91 0,0545 54,54 18,33

Алгоритм и калькуляторы расчета нагревателя муфельной печи

Из чего делаются нагревательные спирали

Для начала – буквально несколько слов о проволоке, которая используется для навивки нагревательных спиралей. Обычно для таких целей применяется нихромовая или фехралевая.

Нихромовая (от сокращений никель + хром) чаще всего представлена сплавами Х20Н80- Н , Х15Н60 или Х15Н60- Н .

Цены на муфельную печь

Ее достоинства:

— высокий запас прочности при любых температурах нагрева;

— пластична , легко обрабатывается, поддаётся свариванию;

— долговечность, стойкость к коррозии, отсутствие магнитных качеств.

Недостатки:

— более низкие показатели нагрева и термоустойчивости по сравнению с фехралевой .

Фехралевая (от сокращений феррум , хром , алюминий) – в наше время чаще используется материал из сплава Х23 Ю 5Т.

Достоинства фехраля :

— намного дешевле нихрома, благодаря чему в основном материал и пользуется широкой популярностью;

— имеет более значительные показатели сопротивления и резистивного нагрева;

Недостатки:

— низкая прочность, а после даже однократного нагрева свыше 1000 градусов – выраженная хрупкость спирали;

— наличие магнитных качеств, подверженность коррозии из-за наличии в составе железа;

— ненужная химическая активность – способен вступать в реакции с материалом шамотной футеровки печи;

— чрезмерно большое термическое линейное расширение.

Каждый из мастеров волен выбрать любой из перечисленных материалов, проанализировав их «за» и «против» . Алгоритм расчёта учитывает особенности такого выбора.

Шаг 1 – определение мощности печи и силы тока, проходящего через нагреватель.

Чтобы не вдаваться в ненужные в данном случае подробности, сразу скажем, что существуют эмпирические нормы соответствия объема рабочей камеры муфельной печи и ее мощности. Они показаны в таблице ниже:

Правила эксплуатации

Важно знать сферы применения и принцип работы муфельной печи, чтобы не допускать ошибок во время эксплуатации. Нужно проверить все узлы соединений оборудования

Нельзя допускать утечек. Следует убедиться в том, что корпус печи не имеет повреждений. Работать с раскалённым металлами нужно в защитных перчатках, очках и респираторе. Заготовки вытаскиваются из камеры с помощью кузнечных щипцов.

Печь для закалки металла нужна, чтобы придать металлическим заготовкам высокие показатель прочности и твердости. Для этого не нужно покупать дорогое оборудования. Печь можно сделать самостоятельно и без серьёзных сложений.

Ремонт паяльника своими руками

Паяльник перестает нагреваться по одной из двух причин. Это в результате перетирания сетевого шнура или перегорания нагревательной спирали. Чаще всего перетирается шнур.

Проверка исправности сетевого шнура и спирали паяльника

При пайке сетевой шнур паяльника постоянно изгибается, особенно сильно в месте выхода из него и вилки. Обычно в этих местах, особенно если сетевой шнур жесткий, он и перетирается. Сначала проявляться такая неисправность недостаточным нагревом паяльника или периодическим его охлаждением. В конечном итоге, паяльник перестает нагреваться.

Поэтому перед ремонтом паяльника нужно проверить наличие питающего напряжения в розетке. Если напряжение в розетке есть, то проверить сетевой шнур. Иногда неисправность шнура можно определить, плавно перегибая его в месте выхода из вилки и паяльника. Если паяльник при этом стал чуть теплее, значит точно неисправен шнур.

Проверить исправность шнура можно подключив к штырям вилки щупы мультиметра, включенного в режим измерения сопротивления. Если при изгибании шнура показания будут изменяться, то шнур перетерся.

Если обнаружилось что, обрыв шнура находится в месте выхода из вилки, то для ремонта паяльника достаточно будет отрезать часть шнура вместе с вилкой и установить на шнур разборную.

В случае, если шнур перетерся в месте выхода из ручки паяльника или мультиметр, подключенный к штырям вилки, при изгибании шнура не показывает сопротивление, то придётся разбирать паяльник. Для получения доступа к месту присоединения спирали к проводам шнура достаточно будет снять только ручку. Далее последовательно прикоснуться щупами мультиметра к контактам и штырям вилки. Если сопротивление равно нулю, то в обрыве спираль или плохой контакт ее с проводами шнура.

Коротко о главном

Итак, как было сказано ранее, можно купить готовые спирали, которые рассчитаны на определенное сопротивление и подходят для определенных моделей электронок.

Однако, переходя на этап профессионального вейпинга, многие парильщики изъявляют желание наматывать испарители своих электронных собственными силами, что дает массу преимуществ:

  1. Экономия.

    Если говорить о долгосрочной самостоятельной намотке атомайзера, то речь идет о колоссальной экономии. Готовые спирали стоят практически столько же, сколько обойдется целый моток канталовой или нихромовой проволоки, из которой можно скрутить как минимум десяток вкусных койлов.
  2. Уровень мастерства.

    Это, пожалуй, то, ради чего вейперы и придумывают всевозможными сэтапы для своих модов. Каждый, кто занимается намоткой атомайзера, пытается придумать что-то новенькое, чтоб показать свой уровень профессионализма в этой поистине увлекательной культуре.
  3. Достижение определенных показателей вейпа.

    К примеру, односпиральный обслуживаемый атомайзер можно намотать таким образом, что он будет выдавать вдвое больше пара, нежели его более современный собрат. Да-да, все это благодаря удачно подобранной намотке. Тогда как готовые спирали рассчитаны только на определенные показатели сопротивления.

Преимущества намотки испарителями собственными силами

Как было сказано ранее, образование пара происходит непосредственно на спирали и, соответственно, чем больше площадь намотки, тем большее количество пара выйдет из нее.

Увеличить поверхность намотки можно различными способами:

  • при намотке использовать более толстую проволоку – наиболее простой, но крайне непрактичный вариант увеличения площади спирали;
  • использование специальных форм намотки, за счет чего можно увеличить количество койлов (витков);
  • увеличение площади самой оправы, на которой наматывается спираль.

Если увеличить все и сразу, то аккумулятор просто не будет в состоянии преодолеть сопротивлении на койлах. Это может привести к тому, что спирать будет греться неравномерно, а ее температура будет слишком низкой и недостаточной для реализации процесса парообразования. Тут либо вейп вообще не будет выдавать пар, либо будет делать это ну очень медленно.

Но, невзирая на все вышесказанное, эти показатели напряжения и сопротивления можно рассчитать, если знать, какая температура должна быть на выходе, материал, из которого наматывается спираль и мощностные показатели самого источника питания.

Ну, а для тех, кто не испытывал особой любви к урокам физики в школе, есть масса всевозможных онлайн-калькуляторов и специализированных сайтах, где можно в два счета просчитать, какого диаметра и какой длины должен быть нагревательный элемент, чтоб процесс парения был максимально качественным.

Смысл реализации всевозможных койлов заключается в том, что за счет большого количества витков и более плотного прилегания их между собой, происходит увеличение той самой площади, которая и нужна вейперу для получения хорошего и вкусного пара.

Калькуляторы расчета нагревателя муфельной печи

Если домашнему мастеру по характеру выполняемых им работ необходима муфельная печь, то он, конечно, может приобрести готовый прибор в магазине или по объявлениям. Однако, стоит подобное оборудование заводского производства – весьма недешево. Поэтому многие умельцы берутся за изготовление таких печей самостоятельно.

Основной «рабочий узел» электрической муфельной печи – нагреватель, который в условиях кустарного производства обычно исполняют в виде спирали из специальной проволоки с высокими показателями сопротивления и термической отдачи. Характеристики его должны строго соответствовать мощности создаваемого оборудования, предполагаемым температурным режимам работы, а также отвечать еще некоторым требованиям. Если планируется самостоятельное изготовление прибора, то советуем применить предлагаемые ниже алгоритм и удобные калькуляторы расчета нагревателя муфельной печи.

Расчет требует определенных пояснений, которые постараемся изложить максимально доходчиво.

Расчет нихромовой спирали | Полезное

Расчёт нихромовой спирали, на самом деле, очень важный процесс. Очень часто, на заводах, производствах, фабриках, этим пренебрегают и делают расчёт «на глаз», после чего включают спираль в сеть, а затем, подбирают нужное количество витков в зависимости от нагрева нихромового провода. Возможно, данная процедура очень проста, однако она занимает большой промежуток времени и часть нихрома просто расходуется попусту.

Однако данную процедуру можно выполнить намного точнее, проще и быстрее. Для того, что рационализировать свой труд, для расчёта нихромовой спирали на напряжение 220 Вольт, можно использовать ниже приведённую таблицу. Из расчёта, что удельное сопротивление нихрома равно (Ом мм2 / м)C, можно быстро рассчитать длину намотки виток к витку в зависимости от диаметра стержня, на который наматывают нихромовую нить, и непосредственно от самой толщины нихромового провода. А используя простую математическую пропорцию, без труда можно сделать расчёт длины спирали для другога напряжения.

К примеру, нужно определить длину нихромовой спирали на напряжение 127 Вольт из провода, толщина которого 0,3 мм, а стерженя для намотки 4 мм в диаметре. Посмотрев в таблицу, видно, что длина этой спирали на напряжение 220 Вольт будет равняться 22 см. Составляем простое соотношение:

220 В — 22 см 127 В — Х см тогда: X =127 22 / 220= 12,7 см

Намотав нихромовую спираль, осторожно подключите ее, не обрезая, к источнику напряжения и убедитесь в своих расчётах, а точнее в расчётах правильности намотки. И стоит помнить, что у закрытых спиралей длину намотки увеличивают на треть значения, приведенного в данной таблице

Нихромовая проволока, расчет веса нихрома, применение нихромов

www.olakis.ru

Где можно взять нихромовую проволоку

Существует несколько вариантов, как и где можно приобрести изделие из нихрома.

На сегодняшний день практически в каждом населенном пункте существует справочная по товарам и услугам. Обратившись к ней, можно получить от оператора информацию, какая организация торгует нихромом и ее контактные телефоны. Такую информацию можно узнать и в Интернете. Однако в этой ситуации шансы приобрести нормальный товар практически равен нулю, потому что если кто и возьмется доставить материал, то это будет всего лишь полтора-два метра. Организации в основном специализируются на оптовых продажах. Но уточнить все-таки стоит.

Если такое изделие продается в другом городе, то можно воспользоваться услугой «товары−почтой». Однако этот вариант предусматривает доплату за пересылку. Можно проволоку приобрести в специализированных магазинах. Это могут быть «Радиодетали», «Умелые руки» и другие подобные павильоны. Продавцы таких частных магазинов, торгующие различными запчастями, друг друга знают очень хорошо. Поэтому, если у такого «частника» в наличии нет нихромовой проволоки, он может подсказать, где ее приобрести. Между прочим, найти ее можно в обыкновенном хозяйственном магазине. Спирали для электрических плит изготовлены из нихрома.

Ни один населенный пункт не может обойтись без наличия базара, где можно приобрести все что угодно. Самое главное – это тщательно обойти весь рынок и даже можно поспрашивать продавцов. Можно и наткнуться на такое изделие из нихрома.

Чтобы найти такую проволоку, следует где-нибудь отыскать старый прибор, например, лабораторный реостат. Сам по себе он не представляет никакой ценности, однако на нем намотано небольшое количество нихрома.

Нихромовая проволока является высококачественным пластичным изделием благодаря своим замечательным техническим характеристикам. Купить или достать ее любым другим способом хоть и трудно, но возможно. Нужно лишь проявить инициативу и попробовать все вышеуказанные способы.

Наша страна никогда не испытывала недостатка в «народных умельцах». Сообразительность и изобретательность всегда являлись отличительными чертами русского человека. Один из вопросов, которые волнуют многих современных «Кулибиных» – где взять необходимое количество нихромовой проволоки? Но сначала разберемся, чем же она так привлекает отечественных «самоделкиных»?

Что это за материал? По сути, это особый сплав с повышенной концентрацией таких химических элементов, как никель и хром (отсюда и название проволоки). Она может иметь сечение самой различной конфигурации (круг, трапеция, квадрат, овал) и диаметра (от долей «мм» до нескольких «см»).

Почему «нихром» так ценится?

Во-первых
, он не ржавеет, а коррозия, как известно – «больное место» большинства металлов и сплавов.

Во-вторых
, проволока из этого материала характеризуется повышенным сопротивлением электрическому току. Следовательно, чтобы получить одинаковое количество выделяемого тепла при включении в эл/цепь, «нихрома» (в погонных метрах) понадобится в несколько раз меньше, чем, скажем, стали. Отсюда и уменьшение веса прибора (приспособления), и возможность миниатюризации конструкции (уменьшения габаритов).

В-третьих
, нихромовая проволока не изменяет своих свойств, не деформируется, не «горит» при высоких температурах.

В-четвертых
, она эластична, и ей можно придать любую форму.

Где применяется такая проволока? Честно говоря, всего и не перечислить, особенно если вести речь о производстве. Поэтому в качестве примера отметим только несколько вариантов ее использования в быту:

  • станки для разрезания пенопластов;
  • приспособления для выжигания по древесине;
  • системы обогрева стекол «авто» и зеркал заднего обзора;
  • простейшие бытовые обогреватели, более известные как «козлы»;
  • печи для обжига (при самостоятельном изготовлении керамики);
  • для разогрева некоторых видов металлов (в домашних кузнях);
  • самодельные .

Где взять?

Вот мы и подошли к этому риторическому вопросу. Рассмотрим все возможные варианты.

Купить
. Здесь также свои варианты.

Кстати, приобрести такую проволоку можно и в обычном хозяйственном магазине. Спирали для эл/плит делаются из того же «нихрома».

На базаре. В каждом населенном пункте есть места, где народ продает все, что угодно. Такие «точки» называются по-разному – «барахолка», «развал», «блошиный рынок». Нужно только не пожалеть времени и походить, посмотреть, поспрашивать. Все зависит от того, в каком объеме нужен «нихром». Наверное, это самый перспективный путь поиска, тем более, если материала нужно немного.

Вывод

Купить или достать иным способом нихромовую проволоку можно. Необходимо лишь проявить инициативу и испробовать все указанные выше способы.

Принцип работы и основные части конструкции

Чтобы легче понять принцип работы такой печи нужно понимать, что означает слово «муфельная». Муфель – это закрытая камера, позволяющая создать и поддерживать высокую температуру внутри себя для выполнения различных задач. Чаще всего ее изготовление или приобретение требуется при обжиге керамических изделий, для плавки металлов и т.д.

Диапазон температур, который можно достичь в таком оборудовании – достаточно обширен, и колеблется от 200 до 1100 градусов. В промышленных масштабах удается достичь и больших показателей, но в домашних условиях хватает и 800-900 градусов.

Из чего состоит муфельная печь:

Металлический корпус, который может быть с горизонтальной или вертикальной ориентацией. Для его изготовления можно использовать листовую сталь, либо адаптировать ненужную духовку от газовой или электрической печи. Все лишние компоненты убираются, остается только корпус. Из газового баллона такую печь не сделать, так как его диаметр слишком мал.

Теплоизолятор – в качестве него выступает шамотный кирпич, который способен выдержать высокие температуры и поддержать их определенное время. От качества этого материала зависит КПД печи и ее теплопотери. Кроме кирпича можно использовать плиты ШПГТ-450, которые кроме высоких температур отлично справляются и с химически нейтральными кислотами и щелочами. Кроме этого, размеры плит более выгодны при изготовлении печей своими руками из-за своих размеров, позволяющих отделать стенку печи из цельного фрагмента плиты. И еще одно преимущество материала – это его структура, позволяющая быстро нагнетать и удерживать высокую температуру внутри камеры.

Внешний теплоизолятор – в его роли выступает перилит или базальтовая вата. В обязанности этих материалов входит сократить потери тепла во внешнюю среду. Это в значительной мере увеличит КПД печи: сократит время на нагнетание нужной температуры и расход энергии, а также увеличит длительность остывания. Применение асбеста для этих целей – нежелательно, ввиду того, что в процессе его нагревания происходит выделение канцерогенных веществ, опасных для здоровья человека.

Нагревательные элементы – в их качестве выступают нихромовые или фехралевые спирали, приобретенные или изготовленные своими руками. Для этого нужно приобрести нихромовую или фехралевую проволоку, толщиной, не менее 1 мм. Но для более точного определения толщины материала, для изготовления спирали, рекомендуем воспользоваться табличными данными, где указана предполагаемая температура топочной камеры, толщина проволоки и площадь поперечного сечения.

Чтобы определиться с выбором проволоки: нихромовая или фехралевая, достаточно сопоставить их характеристики:

  • Нихромовая – это сплав никеля и хрома. К ее основным качествам относят: прочность, пластичность, долговечность, износоустойчивость, устойчивость к ржавлению. В качестве недостатков можно выделить высокую стоимость и низкие показатели жаропрочности, по сравнению с фехралевой проволокой.
  • Фехралевая – это сплав железа, хрома и алюминия. К ее основным плюсам можно отнести: высокую сопротивляемость, жаропрочность, а также доступность в финансовом плане. Если говорить о недостатках, то они тоже есть, в первую очередь это короткий срок эксплуатации, при условии что регулярные температурные воздействия будут доходить до 1000 градусов. Это происходит по причине потери пластичности под воздействием высоких температур, в результате чего происходит переламывание проволоки. Кроме этого, наличие железа в сплаве может привести к реакции ржавления при повышении влажностных показателей. Несмотря на все минусы, она считается достаточно популярной, где главным определяющим фактором выступает цена и теплоотдача, а как известно, эти параметры у нее на высоте.

Более наглядно процесс сравнения обоих материалов по главным параметрам, можно увидеть на схеме:

Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной мощности печи (простой расчет)

Пожалуй, наиболее простым вариантом расчета нагревателей из нихрома является выбор диаметра и длины нихромовой проволоки при заданной мощности нагревателя, питающего напряжения сети, а также температуры, которую будет иметь нагреватель

Несмотря на простоту расчета, в нем имеется одна особенность, на которую мы обратим внимание ниже

Пример расчета диаметра и длины нагревательного элемента

Исходные данные: Устройство мощностью P = 800 Вт; напряжение сети U = 220 В; температура нагревателя 800 °C. В качестве нагревательного элемента используется нихромовая проволока Х20Н80.

1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент: I = P / U = 800 / 220 = 3,63 А.

2. Теперь нужно найти сопротивление нагревателя: R = U / I = 220 / 3,63 = 61 Ом;

3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель, нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0,35 мм и площадью поперечного сечения S = 0,096 мм 2 .

Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока.

Диаметр нихромовой проволоки, мм Площадь поперечного сечения нихромовой проволоки, мм 2 Температура нагрева нихромовой проволоки, °C
200 400 600 700 800 900 1000
Максимальная допустимая сила тока, А
5 19,6 52 83 105 124 146 173 206
4 12,6 37,0 60,0 80,0 93,0 110,0 129,0 151,0
3 7,07 22,3 37,5 54,5 64,0 77,0 88,0 102,0
2,5 4,91 16,6 27,5 40,0 46,6 57,5 66,5 73,0
2 3,14 11,7 19,6 28,7 33,8 39,5 47,0 51,0
1,8 2,54 10,0 16,9 24,9 29,0 33,1 39,0 43,2
1,6 2,01 8,6 14,4 21,0 24,5 28,0 32,9 36,0
1,5 1,77 7,9 13,2 19,2 22,4 25,7 30,0 33,0
1,4 1,54 7,25 12,0 17,4 20,0 23,3 27,0 30,0
1,3 1,33 6,6 10,9 15,6 17,8 21,0 24,4 27,0
1,2 1,13 6,0 9,8 14,0 15,8 18,7 21,6 24,3
1,1 0,95 5,4 8,7 12,4 13,9 16,5 19,1 21,5
1,0 0,785 4,85 7,7 10,8 12,1 14,3 16,8 19,2
0,9 0,636 4,25 6,7 9,35 10,45 12,3 14,5 16,5
0,8 0,503 3,7 5,7 8,15 9,15 10,8 12,3 14,0
0,75 0,442 3,4 5,3 7,55 8,4 9,95 11,25 12,85
0,7 0,385 3,1 4,8 6,95 7,8 9,1 10,3 11,8
0,65 0,342 2,82 4,4 6,3 7,15 8,25 9,3 10,75
0,6 0,283 2,52 4 5,7 6,5 7,5 8,5 9,7
0,55 0,238 2,25 3,55 5,1 5,8 6,75 7,6 8,7
0,5 0,196 2 3,15 4,5 5,2 5,9 6,75 7,7
0,45 0,159 1,74 2,75 3,9 4,45 5,2 5,85 6,75
0,4 0,126 1,5 2,34 3,3 3,85 4,4 5,0 5,7
0,35 0,096 1,27 1,95 2,76 3,3 3,75 4,15 4,75
0,3 0,085 1,05 1,63 2,27 2,7 3,05 3,4 3,85
0,25 0,049 0,84 1,33 1,83 2,15 2,4 2,7 3,1
0,2 0,0314 0,65 1,03 1,4 1,65 1,82 2,0 2,3
0,15 0,0177 0,46 0,74 0,99 1,15 1,28 1,4 1,62
0,1 0,00785 0,1 0,47 0,63 0,72 0,8 0,9 1,0

Примечание:

  • если нагреватели находятся внутри нагреваемой жидкости, то нагрузку (допустимую силу тока) можно увеличить в 1,1 — 1,5 раза;
  • при закрытом расположении нагревателей (например, в камерных электропечах) необходимо уменьшить нагрузки в 1,2 — 1,5 раза (меньший коэффициент берется для более толстой проволоки, больший — для тонкой).

4. Далее определим длину нихромовой проволоки. R = ρ · l / S, где R — электрическое сопротивление проводника (нагревателя) , ρ — удельное электрическое сопротивление материала нагревателя [Ом · мм 2 / м], l — длина проводника (нагревателя) , S — площадь поперечного сечения проводника (нагревателя) .

Таким образом, получим длину нагревателя: l = R · S / ρ = 61 · 0,096 / 1,11 = 5,3 м.

В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с ГОСТ 12766.1-90 «Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия» номинальное значение удельного электрического сопротивления нихромовой проволоки марки Х20Н80 составляет 1,1 Ом · мм 2 / м (ρ = 1,1 Ом · мм 2 / м), см. табл. 2.

Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр — 0,35 мм.

Марка сплава Диаметр, мм Удельное электрическое сопротивление ρном, мкОм·м
Х20Н80-Н от 0,1 до 0,5 включ. 1,08
от 0,5 до 3,0 включ. 1,11
Св. 3,0 1,13
Х15Н60, Х15Н60-Н от 0,1 до 3,0 включ. 1,11
Св. 3,0 1,12
Х23Ю5Т Все диаметры 1,39
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector