Выбор циркуляционного насоса для системы отопления. часть 3

Как подбираются технические характеристики насоса

Для теплого пола применяются циркуляционные насосы, по своим техническим параметрам они в максимальной степени соответствуют выдвигаемым требованиям. Производительность насоса рассчитывается по формуле

Q = 0,86×Pн/(t°пр.т – t°обр.т).

В этой формуле Pн равняется максимальной мощности теплового контура в кВт; t°пр. т – начальная температура теплоносителя на входе в систему обогрева; t°обр. т – температура теплоносителя на выходе из системы обогрева пола. Если в квартире к одному насосу планируется подключать несколько контуров, то необходимо суммировать все значения по каждому из них.

Практический совет. Профессионалы рекомендуют для каждого помещения монтировать автономную систему теплого пола. Это позволит более точно регулировать параметры микроклимата с учетом назначения помещения и повысить надежность работы отопительной системы.

Формулы для расчета насоса

Разница температур на входе и выходе зависит от нескольких факторов:

  • Длины контура. Чем больше длина, тем больше площадь должна обогреваться. Это значит, что потребуется много тепловой энергии, температура на входе и выходе будет значительно отличаться;
  • Эффективности теплоизоляции. Если во время монтажа теплого пола грубо нарушались установленные правила, то непродуктивные тепловые потери будут составлять значительные показатели. Особенно это заметно на первом этаже, неправильная теплозащита приводит к тому, что большое количество тепловой энергии расходуется на обогрев почвы. Такие условия эксплуатации также становятся причиной чрезмерного расхода тепловой энергии и понижения эффективности системы, увеличивают нагрузку на насос;
  • Климатической зоны расположения здания. Чем севернее проживает владелец квартиры, тем больше запас по мощности должна иметь система теплого пола, тем больше мощность у циркуляционного насоса. Производители рекомендуют приобретать насосы с 20–25% запасом по мощности.

Расчет и выбор насоса

Таблица характеристик для подбора насоса

Второй важный показатель насоса – напор потока. Напор должен быть достаточным для преодоления гидравлического сопротивления жидкости в системе. Гидросопротивление зависит от общей длины контура, его диаметра и скорости движения теплоносителя. Производители систем водяного пола должны указывать эти параметры, если подогрев делается самостоятельно, то для расчета величины напора насоса нужно пользоваться формулой

H= (П×L + ΣК) /(1000), где

  • Н – требуемый напор насоса;
  • П ­– гидросопротивление погонного метра контура, зависит от диаметра, материала изготовления труб и скорости движения жидкости;
  • L – общая длина контура, включающая и надземные системы управления;
  • К – рекомендованный коэффициент запаса мощности насоса.

После получения всех данных можно приступать к выбору конкретной модели.

Подбор насоса для теплого пола

Ценовой фактор

При выборе циркуляционного насоса имеет значение стоимость самого устройства и его экономичность при эксплуатации. Как правило, работа насоса оправдывается экономией на расходе топлива, а стоимость на саму модель определяется его работоспособностью. По Москве разбег цен на насосы очень большой. Условно из можно разбить на 3 категории:

За 3,5-7 тысяч рублей можно купить базовые функции, с минимальным сроком работы и чаще всего одноразового использования;

Сравнение характеристик насосов эконом сегментаИсточник ms.decorexpro.com

  • Приборы за 7,5-20 тысяч – это «рабочие лошадки», точно обеспечивающие заявленные характеристики, со сроком работы не меньше указанного производителем и с несколькими степенями защиты и оптмальным запасом прочности;
  • VIP–системы с полной автоматизацией, набором дополнительных функций, высоким запасом прочности и возможностью обеспечить теплом большой объем обойдутся уже по стоимости от 20 до 45 тысяч рублей.

Определение насоса через сайт Grundfos

Для того, чтобы иметь возможность выбрать насос на базе программной платформы, Grundfos запустила онлайн приложение WebCAPS. Как можно это сделать, Вы узнаете далее, а пока Вам необходимо перейти на сайт компании Grundfos WebCAPS и перейти в  раздел «Подбор» насоса.

Далее задайте расчеты высоты подъема и потока, а в поле  «Выбор варианта подбора по:» выберите пункт «Отопление». Есть еще много настроек, этих трех значений вполне достаточно, чтобы приложение смогло произвести расчеты и предложить оптимальный вариант насоса, который эффективно будет функционировать в данной системе. Затем нажмите кнопку «Начать подбор».

Готово. Grundfos предлагает варианты насосов на основании введенных данных. Для получения дополнительной информации о продукте, а также подробного описания всего функционала данного насоса, необходимо кликнуть на любой из насосов.

Как выяснить показатель расхода насоса

Формула расчета выглядит так: Q=0,86R/TF-TR

Q – расход насоса в м.куб./ч;

R – тепловая мощность в кВт;

TF – температура теплоносителя в градусах Цельсия на входе в систему,

Схема расположения циркуляционного насоса отопления в системе

Три варианта расчета тепловой мощности

С определением показателя тепловой мощности (R) могут возникнуть трудности, поэтому лучше ориентироваться на общепринятые нормативы.

Вариант 1. В европейских странах принято учитывать такие показатели:

  • 100 Вт/м.кв. – для частных домов небольшой площади;
  • 70 Вт/м.кв. – для многоэтажек;
  • 30-50 Вт/м.кв. – для производственных и хорошо утепленных жилых помещений.

Вариант 2. Европейские нормы хорошо подходят для регионов с мягким климатом. Однако в северных районах, где бывают сильные морозы, лучше ориентироваться на нормы СНиП 2.04.07-86 «Тепловые сети», в которых учтена наружная температура до -30 градусов Цельсия:

  • 173-177 Вт/м.кв. – для небольших зданий, этажность которых не превышает двух;
  • 97-101 Вт/м.кв. – для домов от 3-4 этажей.

Вариант 3. Ниже предложена таблица, по которой можно самостоятельно определить необходимую тепловую мощность с учетом назначения, степени износа и теплоизоляции здания.

Таблица: как определить нужную тепловую мощность

Формула и таблицы расчета гидравлического сопротивления

В трубах, запорной арматуре и любых других узлах системы отопления возникает вязкое трение, которое приводит к потерям удельной энергии. Это свойство систем называют гидравлическим сопротивлением. Различают трение по длине (в трубах) и местные гидравлические потери, связанные с наличием клапанов, поворотов, участков, где изменяется диаметр труб и т.п. Показатель гидравлического сопротивления обозначают латинской буквой «H» и измеряют в Па (паскалях).

Формула расчета: H=1,3*(R1L1+R2L2+Z1+Z2+….+ZN)/10000

R1, R2 обозначают потери давления (1 – на подаче, 2 – на обратке) в Па/м;

L1, L2 – длина трубопровода (1 – подающего, 2 – обратного) в м;

Z1, Z2, ZN – гидравлическое сопротивление узлов системы в Па.

Чтобы облегчить расчеты потерь давления (R), можно воспользоваться специальной таблицей, где учтены возможные диаметры труб и приведены дополнительные сведения.

Таблица для определения потерь давления

Усредненные данные по элементам системы

Гидравлическое сопротивление каждого элемента системы отопления приведено в технической документации. В идеале следует воспользоваться характеристиками, указанными производителями. При отсутствии паспортов изделий можно ориентироваться на примерные данные:

  • котлы – 1-5 кПа;
  • радиаторы – 0.5 кПа;
  • вентили – 5-10 кПа;
  • смесители – 2-4 кПа;
  • тепломеры – 15-20 кПа;
  • обратные клапаны– 5-10 кПа;
  • регулирующие клапаны – 10-20 кПа.

Сведения о гидравлическом сопротивлении труб из различных материалов можно вычислить по таблице ниже.

Таблица потерь давления в трубах

Производители

Насосы этой категории, вне зависимости от фирмы, после окончания эксплуатационного срока подлежат замене, так как велика вероятность остановки из-за внезапных поломок

Разделение агрегатов проводится по производителям, так как каждый из них акцентирует внимание на производительности, стоимости и надежности, то и конечные характеристики насоса отличаются

Европейские – как правило, все работают в среднем или высоком ценовом сегменте и предлагают высокое качество. Снижение цены происходит за счет оптимальных конструктивных решений и маркетинговой политики, в том числе и переноса производства в Китай.

  • Высоким качеством и работоспособностью выделяется немецкий производитель Grundfos – эти модели оснащаются энергосберегающими технологиями. Заявленный срок эксплуатации не менее 10 лет.
  • Компания Wilo также выпускает качественные промышленные и бытовые модели, в основном с электронным управлением.
  • DAB – Италия. При регулярной профилактике, насосы работают безотказно. Компанией затрачивается много средств для устранения шума в насосах сухого типа.

Европейские производители циркуляционных насосовИсточник obzortop.com

Китайские – кроме цены стоит обратить внимание на компанию. Хорошо зарекомендовали себя модели компании Oasis. В первую очередь это стоимость, которая меньше российских и европейских аналогов на 30 %

При этом гарантирована работа на протяжении заявленного срока эксплуатации

В первую очередь это стоимость, которая меньше российских и европейских аналогов на 30 %. При этом гарантирована работа на протяжении заявленного срока эксплуатации

Хорошо зарекомендовали себя модели компании Oasis. В первую очередь это стоимость, которая меньше российских и европейских аналогов на 30 %. При этом гарантирована работа на протяжении заявленного срока эксплуатации.

Российские – также как и остальные участники, работают согласно европейских ГОСТов и выполняют все требования по безопасности.

  • Среди российских производителей наиболее известна фирма «Саблайн Сервис» бренд UniPump. Изготавливает насосы различной направленности. Модели отличаются невысокой стоимостью и использованием наиболее рациональных технологий.
  • Wester принадлежит компании «Импульс». Выпускает продукцию в ограниченном ассортименте. Насосы отличаются хорошей сборкой и использованием деталей с высоким запасом прочности.
  • Компания Джилекс модели «Хозяин» и «Циркуль». В линейке присутствуют насосы для небольших контуров и 2;-3 этажных систем.

Определение переменных


На производительность центробежного насоса влияют следующие составляющие:

  • напор воды;
  • необходимая потребляемая мощность;
  • размер рабочего колеса;
  • максимальная высота всасывания жидкости.

Итак, рассмотрим более детально каждый из показателей, а также приведем формулы расчета для каждого из них.

Расчет производительности центробежного насосного агрегата проводится согласно следующей формуле:

W = l1*(п*d1 – b*n)*c1 = l2*(п*d2 – b*n)*c2

Обозначение этой формулы следующее:
W – производительность насоса, измеряемая в м3/с;
l1,2 – ширина рабочего колеса соответственно по диаметрах d1,2;
d1 – диаметр всасывающего патрубка;
d2 – диаметр рабочего колеса;
b – толщина лопаток крыльчатки;
n – количество лопаток;
п – число «пи»;
с1,2 – меридианные сечения входящего и выходящего патрубков.

Возможно, Вас заинтересует статья о классификации центробежных насосов.

Статью о центробежных самовсасывающих насосах читайте здесь.

Создаваемый центробежным насосом напор воды рассчитывается по формуле:

N = (h2 – h1)/(p * g) + Ng + sp

Переменные в формуле обозначают:
N – высота напора, измеряемая в метрах;
h1 – давление в емкости забора жидкости, измеряемое в Па;
h2 – давление в емкости приема жидкости;
p – плотность жидкости, которая перекачивается насосом, измеряется в кг/м3;
g – постоянная величина, указывающая ускорение свободного падения;
Ng – показатель необходимой высоты подъема жидкости;
sp – сумма потерь напора жидкости.

Расчет необходимой потребляемой мощности производится по следующей формуле:

M = p*g*s*N

Переменные формулы означают:
M – необходимая потребляемая мощность;
p – плотность перекачиваемой жидкости;
g – величина ускорения свободного падения;
s – необходимый объем расхода жидкости;
N – высота напора.

Максимальная высота всасывания жидкости рассчитывается по формуле:

Nv = (h1 – h2)/(p * g) – sp – q2/(2*g) – k*N

Обозначение переменных следующее:
Nv – высота всасывания жидкости;
h1 – давление в емкости забора;
h2 – давление жидкости на лопатки крыльчатки;
p – плотность жидкости, которая перекачивается;
g – ускорение свободного падения;
sp – количество потерь во входящем трубопроводе при гидравлическом сопротивлении;
q2/(2*g) – напор жидкости во всасывающей магистрали;
k*N – потери, зависящие от прибавочного сопротивления;
k – коэффициент кавитации;
N – создаваемый насосом напор.

Несколько важных моментов

Поскольку в продаже имеются циркуляционные насосы, укомплектованные «сухим» или «мокрым» ротором, с ручным или автоматическим способом управления скоростями, специалисты советуют приобретать устройство, ротор которого погружен в теплоноситель полностью. Выбирать его следует не только по причине пониженного шума, но и потому, что он справится с нагрузкой успешнее. Насос следует монтировать так, чтобы вал ротора находился в горизонтальном положении.

Для производства высококачественного изделия применяют прочную сталь и керамический вал. Срок эксплуатации такого циркуляционного насоса составляет минимум 20 лет. Не следует выбирать для горячего водоснабжения устройство с чугунным корпусом – он очень быстро разрушается при использовании в таких условиях. Предпочтительнее покупать изделие из нержавейки, бронзы или латуни.

Когда при работе насоса в системе слышен шум, это не всегда говорит о наличии поломки. Часто причиной его появления является воздух, попавший в систему после ее запуска. Поэтому перед началом работы отопительной конструкции нужно спустить воздух при помощи специальных клапанов. Когда система поработает пару минут, данную процедуру необходимо повторить и отрегулировать насос.

В случае запуска насоса с ручным способом регулировки, прибор устанавливают на максимальную скорость, а в регулируемых моделях просто отключают блокировку.

Видео о расчете циркуляционного насоса для отопления:

Ревизия производственных систем водоснабжения

Насосы, задействованные в замкнутых оборотных системах, могут работать практически бесперебойно, и зачастую работают круглосуточно. На любом производстве есть технический персонал, отвечающий за безаварийную работу насосов, который и должен производить ежедневный осмотр.

Необходимо постоянное наблюдение за плавностью запуска и хода механизма, выявление вибраций и биения в агрегате или трубопроводе

Основное внимание уделяется состоянию фланцевых соединений и муфт, креплениям агрегата на фундаменте, смазке сальников и температуре подшипников насоса. Для них очень важна качественная смазка — масло меняется в определённые производителем сроки

Контроль состояния насосного оборудования на производстве

  • Чаще всего, схема такова: первая чистка подшипников с заменой масла происходит достаточно быстро, через двести часов работы насоса. Следующая замена может быть произведена после двух тысяч часов эксплуатации – это примерно один раз в год. Чем более высокое качество у масла, тем большим может быть этот срок.
  • В процессе работы агрегата, одни детали изнашиваются быстрее других, и это нормально. Многое зависит от температуры перекачиваемой жидкости, наличия в ней абразивных примесей, уровня разрежения во всасывающей части. В первую очередь, в негодность приходят втулки и уплотнительные кольца, сальниковая набивка.
  • Для их работы изготовителем отводится определённый промежуток времени, после чего, не дожидаясь поломки, насос должен быть направлен на капитальный ремонт. После ревизии производятся контрольные испытания, по результату которых агрегат может быть вновь внедрён в систему.

Сроки проверок и капремонтов насосного оборудования, устанавливаются согласно реальным условиям эксплуатации насосов, но с учётом рекомендаций производителя. На производствах, по каждому агрегату ведётся журнал осмотров, куда заносят показания контрольно-измерительных приборов, состояния основных узлов и даты проведения профилактики оборудования.

Водный объем носителя тепла в трубе и радиаторе как осуществляется расчет

Водный объем или носителя тепла в самых разнообразных трубопроводах, например как полимерный этилен малого давления (ПНД труба) трубы из полипропилена, трубы из металлопластика, трубы профильные, важно знать при выборе какого то оборудования, в особенности расширительного бачка. Например в металлопластиковой трубе диаметр 16 в метре трубы 0,115 гр. носителя тепла

носителя тепла

Например в металлопластиковой трубе диаметр 16 в метре трубы 0,115 гр. носителя тепла.

Вы знали? Быстрее всего нет. Да и вам собственно для чего это знать, пока вы не встретились с выбором, например расширительного бачка. Знать объем носителя тепла в системе обогрева нужно не только для выбора расширительного бачка, но и для приобретения антифриза. Антифриз реализуется в неразбавленном до -65 градусов и разбавленном до -30 градусов виде. Узнав объем носителя тепла в системе обогрева вы сумеете приобрести ровное кол-во антифриза. Например, неразбавленный антифриз нужно разбавлять 50*50 (вода*антифриз), а это означает при объемах носителя тепла равном 50 литров, вам потребуется приобрести всего 25 литров антифриза.

Рекомендуем для вас форма расчета объёма воды (носителя тепла) в водопроводе и отопительных радиаторах. Введите длину трубы конкретного диаметра и мгновенно узнаете сколько в этом участке носителя тепла.

Водный объем в трубах разных диаметров: выполнение расчета

Как только вы рассчитали объем носителя тепла в водомерном узле, однако для создания полной картины, а конкретно чтобы узнать весь объем носителя тепла в системе, еще вам потребуется высчитать объем носителя тепла в отопительных радиаторах.

Объемного расчет воды в трубах

Водный объем в определенных металлических батареях

Уж сейчас то вам точно не будет трудно подсчитать объем носителя тепла в системе обогрева.

Объемного расчет носителя тепла в отопительных радиаторах

Для того чтобы подсчитать весь объем носителя тепла в системе обогрева нам нужно еще добавить водный объем в котле. Его узнать можно в паспорте котла либо же взять приблизительные цифры:

котел напольный — 40 литров воды;

навесной котел — 3 литра воды.

Краткое руководство по применению калькулятора «Объемного расчет воды в самых разнообразных трубопроводах»:

  1. в первом перечне подберите материал трубы и его диаметр (это может быть пластик, полипропилен, металопластик, сталь и диаметры от 15 — …)
  2. в другом перечне пишем метраж подобранной трубы из первого перечня.
  3. Жмем «Высчитать».

«Высчитать кол-во воды в отопительных радиаторах»

  1. в первом перечне выбираем меж осевое расстояние и из каких материалов отопительный прибор.
  2. вводим численность секций.
  3. Жмем «Высчитать».

Отопление ‘target=»_blank»>’)

Расчет параметровгидравлического насоса

Для безопасной работы гидромагистрали принимаем стандартное давление, равное 3 МПа. Произведем расчет параметров гидропривода при принятом значении давления.

Производительность гидравлических насосов рассчитывается по формуле

V = ,(13)

где Q − требуемая сила на штоке, Q = 200 кН;

L − длина рабочего хода поршня гидроцилиндра, L = 0,5 м;

t − время рабочего хода поршня гидроцилиндра, t = 0,1 мин;

р − давление масла в гидроцилиндре, р = 3 МПа;

η1 − КПД гидросистемы, η1 = 0,85;

V = = 39,2 л/мин.

По данным расчета выбираем насос НШ-40Д.

10 Расчет параметров электродвигателя

Мощность, расходуемая на привод насоса, определяется по формуле:

N = ,(14)

где η12 − общий КПД насоса, η12 = 0,92;

V – производительность гидравлического насоса, V = 40 л/мин;

р − давление масла в гидроцилиндре, р = 3 МПа;

N = = 0,21 кВт.

По данным расчета для получения требуемой производительности насоса выбираем электродвигатель АОЛ2-11, с частотой вращения n = 1000 мин−1 и мощностью N = 0,4 кВт.

11 Расчет пальца лап на изгиб

Наибольший изгибающий момент пальцы лап будут испытывать при максимальной нагрузке R = 200 кН. Так как лап 6, то один палец будет испытывать изгибающий момент от нагрузке R = 200 / 6 = 33,3 кН (рисунок 4).

Длина пальца L = 100 мм = 0,1 м.

Изгибающее напряжение для круглого сечение :

σ = (15)

где М − изгибающий момент;

d – диаметр пальца;

В опасном сечении момент будет

Мизг = R ∙ L / 2 = 33,3 ∙ 0,1 / 2 = 1,7 кН∙м.

Рисунок 4 – К расчету пальца на изгиб.

Палец в своем сечении представляет круг диаметром d = 40 мм = 0,04 м. Определим его изгибающее напряжение:

σ = = 33,97 ∙ 106 Па = 135,35 МПа

Условие прочности : ≥ σизг.

Для стали Ст 45 допускаемое напряжение = 280 МПа.

Условие прочности выполняется, т. к. допускаемое напряжение на изгиб больше действительного.

Были рассчитаны необходимые параметры гидроцилиндра. По данным расчета был установлен гидроцилиндр с диаметром поршня 250 мм и диаметром штока 120 мм. Действующее усилие на штоке составляет 204 кН. Площадь поперечного сечения штока 0,011 м2.

Расчет штока на сжатие показал, что напряжение сжатия равно 18,5 МПа и меньше допускаемого 160 МПа.

Был проведен расчет сварного шва на прочность. Допускаемое напряжение равно 56 МПа. Действительное напряжение, возникающее в сварном шве равно 50 МПа. Площадь шва 0,004 м2.

Расчет параметров гидравлического насоса показал, что производительность насоса должна быть больше 39,2 л/мин. По данным расчета выбираем насос НШ-40Д.

Был проведен расчет параметров электродвигателя. По результатам расчета был выбран электродвигатель АОЛ2-11 с частотой вращения n = 1000 мин−1 и мощностью N = 0,4 кВт.

Расчет пальца лап на изгиб показал, что в опасном сечении изгибающий момент будет Мизг = 1,7 кН∙м. Изгибающее напряжение σ = 135,35 МПа, что меньше допускаемого = 280 МПа.

Понятия и структура рынка услуг. Транспортные услуги
Под широким термином «международная торговля» можно понимать не только отношения купли продажи товаров, но и услуг. Услуги – это деятельность, непосредственно удовлетворяющая личные потребности членов общества, домашних хозяйств, потребности разного рода предприятий, объединений, организа …

Технологический процесс сборки двигателя
Установить блок цилиндров на стенд и проверить герметичность масляных каналов. Нарушение герметичности не допускается. Установить блок но стенд для разборки — сборки в горизонтальное положение. Продуть все внутренние полости блока цилиндров сжатым воздухом (пистолет для обдува деталей сжатым воздух …

Определение передаточных чисел раздаточной коробки
В раздаточных коробках предусматриваются две передачи – высшая и низшая. Высшая передача является прямой и передаточное число её равно 1. Передаточное число низшей передачи определим из следующих условий: — Из условия преодоления максимального подъёма: — Из условия полного использования сцепной мас …

Расчет насоса

Исходные данные

Произвести необходимые расчеты и подобрать оптимальный вариант насоса для подачи в реактор Р-202/1 из емкости Е-37/1 при следующих условиях:

· Среда — бензин

· Расход 8 м3/ч

· Давление в емкости атмосферное

· Давление в реакторе 0,06 МПа

· Температура 25 оС

· Геометрические размеры, м: z1=4; z2 =6; L=10

Определение физических параметров перекачиваемой жидкости

Плотность бензина при температуре :

Место для формулы.

При

Таким образом

Кинематическая вязкость:

Динамическая вязкость:

Пас

Давление насыщенных паров:

Определение потребного напора насоса

а) Определение геометрической высоты подъема жидкости (разности уровней жидкости на выходе и входе в емкости, с учетом преодоления высоты реактора):

(26)

где Z1 — уровень жидкости в емкости Е-37/1, м

Z2 — уровень жидкости в колонне Р-202, м

б) Определение потерь напора на преодоление разности давлений в приемном и напорном резервуарах:

(27)

где Рн — абсолютное давление нагнетания (избыточное) в емкости Е-37/1, Па;

Рв — абсолютное давление всасывания (избыточное) в реакторе Р-202/1, Па

в) Определение диаметров трубопровода во всасывающем и нагнетательном тракте

Зададимся рекомендуемой скоростью движения жидкости:

В нагнетательном трубопроводе скорость нагнетания Wн = 0,75 м/с

Во всасывающем трубопроводе скорость всасывания Wв = 0,5 м/с

Выразим диаметры трубопроводов из формул скорости течения жидкости:

(28)

(29)

Откуда:

(30)

(31)

Где d — диаметр трубопровода, м

Q — расход перекачиваемой жидкости, м3/с

W — скорость течения жидкости, м/с

Для дальнейшего расчета диаметров необходимо расход Q выразить в м3/с. Для этого заданный расход в часах поделим на 3600 секунд. Получаем:

Выбираем по ГОСТ 8732-78 трубы, ближайшие к данным значениям.

Для всасывающего трубопровода диаметр (108 5,0)10-3 м

Для нагнетательного трубопровода диаметр (108 5,0)10-3 м

Уточняем скорость течения жидкости по стандартным внутренним диаметрам трубопроводов:

(32)

Где — внутренний диаметр трубопровода, м;

— наружный диаметр трубопровода, м;

— толщина стенки трубопровода, м

Истинные скорости течения жидкости определим из выражений (28) и (29):

Сравниваем истинные скорости течения жидкости с заданными:

г) Определение режима течения жидкости в трубопроводах (числа Рейнольдса)

Критерий Рейнольдса определяется по формуле:

(33)

Где Re — число Рейнольдса

W — скорость течения жидкости, м/с; — внутренний диаметр трубопровода, м; — кинематическая вязкость, м2/с

Всасывающий трубопровод:

Нагнетательный трубопровод:

Так как число Re в обоих случаях превышает значение зоны перехода от ламинарного режима течения жидкости к турбулентному, равное 10000, то это означает, что в трубопроводах развитый турбулентный режим.

д) Определение коэффициента сопротивления трения

Для турбулентного режима коэффициент сопротивления трения определяем по формуле:

(34)

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

е) Определение коэффициентов местных сопротивлений

Во всасывающем трубопроводе располагаются два проходных вентиля и колено с поворотом на 90 градусов. Для этих элементов по справочной литературе находим коэффициенты местных сопротивлений: для проходного вентиля , для колена с поворотом на 90 градусов ,. С учетом сопротивления, возникающего при входе жидкости в насос , сумма коэффициентов местных сопротивлений на всасывающем тракте будет равна:

(35)

В нагнетательном трубопроводе расположены следующие элементы: 3 проходных вентиля , обратный клапан =2, диафрагма , теплообменник , 3 колена с поворотом на 90 градусов . С учетом сопротивления, возникающего при выходе жидкости из насоса , сумма коэффициентов местных сопротивлений в нагнетательном тракте равна:

ж) Определение потерь напора на преодоление сил трения и местных сопротивлений во всасывающем и нагнетательном трубопроводе

Используем формулу Дарси-Вейсбаха:

(37)

где ДН — потери напора на преодоление сил трения, м

L — фактическая длина трубопровода, м

d — внутренний диаметр трубопровода, м

— сумма местных сопротивлений на рассматриваемом тракте

Гидравлическое сопротивление во всасывающем трубопроводе:

Гидравлическое сопротивление в нагнетательном трубопроводе:

и) Определение потребного напора насоса

Потребный напор определяем путем сложения рассчитанных составляющих, а именно геометрической разницы уровней в печи и в колонне, потерь на преодоление разницы давлений в печи и в колонне, а также местных гидравлических сопротивлений во всасывающем и нагнетательном трубопроводах, плюс 5% на неучтенные потери.

(40)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector