Схемы подключения трехфазного электродвигателя в сеть 220в
Содержание:
- Принцип работы однофазного двигателя
- Запуск асинхронного двигателя по схеме звезды
- Подключение трехфазного двигателя к сети 220В
- Принципы работы трехфазных асинхронных двигателей
- Стандартная схема включения трехфазного двигателя в однофазную сеть
- Схема включения трёхфазного электродвигателя на 220В
- Постепенный разгон
- Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)
- Использование частотного преобразователя
- Продвигаемся к кнопочному посту
Принцип работы однофазного двигателя
Основу устройства классического однофазного двигателя образуют две обмотки, которые находятся под прямым углом относительно друг друга. У каждой из них имеется свое предназначение, что подразумевается их названием:
- главная;
- вспомогательная.
Эти обмотки могут включать в себя несколько секций, что определяется числом полюсов.
Решив использовать для подключения к дому асинхронный однофазный двигатель, следует изначально помнить о том, что он имеет определенные ограничения. Возможности статора заложены его конструкцией, которая и определяет, для решения каких задач он может использоваться. Речь идет о том, что при создании каждого электродвигателя заранее учитываются, какая из задач будет для него самой значимой: обеспечение максимального КПД, вращающего момента, рабочего цикла и пр.
Подобные асинхронные двигатели создают в процессе эксплуатации более высокий уровень шума, нежели двухфазные аналоги, что связано с наличием у них пульсирующего поля. У двигателя же с двумя фазами этот недостаток проявляется в меньшей степени, поскольку они оснащены пусковым конденсатором. Именно последнее устройство и создает условия для плавной работы электродвигателя.
Асинхронные однофазные двигатели требуют учета определенных правил их эксплуатации, чем они выделяются на фоне трехфазных аналогов. Недопустимым считается включение однофазных двигателей в режиме «холостого хода». Работа при малых нагрузках приводит к сильному их нагреву. Оптимально, когда такой двигатель работает при нагрузке, которая составляет более 25% от полной.
Запуск асинхронного двигателя по схеме звезды
Для этого способа концы всех обмоток К1, К2, К3 соединяются в точке нейтрали и изолируются, а на их начала подается линейное напряжение.
К одному началу жестко подключается рабочий ноль сети, а к двум другим — потенциал фазы следующим способом:
- первая любая обмотка соединяется жестко;
- вторая врезается через конденсаторную сборку.
Для стационарного подключения асинхронного двигателя необходимо предварительно определить фазу и рабочий ноль питающей сети.
Как подобрать конденсаторы
В схеме запуска электродвигателя используется две цепочки для подключения обмотки через конденсаторные сборки:
- рабочая — подключенная во всех режимах;
- пусковая — используемая только для интенсивной раскрутки ротора.
В момент запуска параллельно работают обе эти схемы, а при выводе на рабочий режим цепочка пуска отключается.
Емкость рабочих конденсаторов должна соответствовать потребляемой мощности электрического двигателя. Для ее вычисления используют эмпирическую формулу:
Входящие в нее величины номинального тока I и напряжения U как раз и вводят корректировку по электрической мощности двигателя.
Емкость пусковых конденсаторов обычно в 2÷3 крата превышает рабочую.
Правильность подбора конденсаторов влияет на образование токов в обмотках. Их необходимо проверять после запуска двигателя под нагрузкой. Для этого замеряют токи в каждой обмотке и сравнивают их по величине и углу. Хорошая эксплуатация осуществляется при минимально возможном перекосе. В противном случае двигатель работает нестабильно, а какая-то обмотка или две станут перегреваться.
Рекомендуемые выключатели
В пусковой схеме показан выключатель SA, который вводит в работу на короткое время запуска пусковой конденсатор. Существует много конструкций кнопок, позволяющих выполнять эту операцию.
Однако, хочется обратить внимание на специальное устройство, выпускаемое в советские времена промышленностью для стиральных машин с активатором — центрифугой. В его закрытом корпусе спрятан механизм в составе:
В его закрытом корпусе спрятан механизм в составе:
- двух контактов, работающих на замыкание от нажатия на верхнюю кнопку «Пуск»;
- одного контакта, размыкающего всю цепь от кнопки «Стоп».
При нажатии на кнопку Пуск подается фаза схемы на двигатель через рабочие конденсаторы одной цепочкой и пусковые — другой. Когда же кнопку отпускают, то один контакт разрывается. Его подключают к пусковым конденсаторам.
Подключение трехфазного двигателя к сети 220В
Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.
Схема подсоединения мотора 380 на 220
При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.
Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.
При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.
Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:
- Питание подается через тумблер или специальную кнопку;
- Нажимается кнопка пускового конденсатора;
- Она удерживается до тех пор, пока электродвигатель не разгонится;
- Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.
При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.
На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).
Подбор конденсаторов
Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:
- Соединение треугольником: Ср=4800*I/U.
- Соединение звездой: Ср=2800*I/U.
Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.
Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.
Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:
- МБГЧ,
- МБПГ,
- МБГО,
- БГТ.
Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.
Теперь вы сможете пользоваться трехфазным асинхронным электродвигателем, включая его к сети 220В или 380В в зависимости от того, какая линия проходит рядом. Чтобы лучше понять принцип подсоединения обмоток и фаз с их началами и концами, посмотрите видео.
Принципы работы трехфазных асинхронных двигателей
Трехфазный асинхронный двигатель работает за счет магнитных полей, которые создаются на обмотках статора. Токи, проходящие через каждую обмотки, имеют сдвиг в 120° относительно друг друга во временной и пространственной характеристике. Таким образом, совокупный магнитный поток на трех контурах является вращающим.
На обмотках статора образуется замкнутая электрическая цепь. Она взаимодействует с магнитным полем статора. Так появляется пусковой момент двигателя. Он стремится повернуть ротор в направлении вращения магнитного поля статора. Со временем пусковой момент подходит к значению тормозного момент ротора, после чего он превышает его и ротор приводится в движение. В этот момент возникает эффект скольжения.
Рассмотрим данный параметр в разных ситуациях:
- На холостом ходу. Без нагрузки на валу скольжение имеет минимальное значение.
- При нарастающей нагрузке. С увеличением статического напряжения величина скольжения растет и может достигнуть критического значения. В случае, если мотор превысит данный показатель, может произойти «опрокидывание» двигателя.
Параметр скольжения находится в диапазоне от 0 до 1. У асинхронных двигателей общего назначения данный параметр составляет 1-8%.
Когда наступает равновесие между электромагнитным моментом ротора и тормозным моментом на валу мотора, процессы колебания величин прекращаются.
При наступлении равновесия между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом, создаваемым нагрузкой на валу, процессы изменения величин прекратятся. Получается, что основной принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. При этом необходимо учитывать, что вращающийся момент возникает только в результате разности частоты вращения магнитных полей на обмотках мотора.
Зная принцип работы асинхронного трехфазного двигателя, можно произвести его запуск. В этом случае стоит учитывать несколько вариантов подключения обмоток мотора.
Стандартная схема включения трехфазного двигателя в однофазную сеть
Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.
На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:
Схема подключения трехфазного двигателя коммутацией обмоток треугольником
- На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
- Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
- На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.
Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.
Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три – по числу обмоток.
Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:
- Схему электрического соединения обмоток.
- Рабочий конденсатор, служащий цели создания правильного распределения фаз.
- Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).
Подключение трехфазного двигателя 230 вольт треугольником
Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.
Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:
- Частоты вращения вала.
- Мощность двигателя.
- Нагрузки, ложащиеся на ротор.
Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током
Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя
Схема включения трёхфазного электродвигателя на 220В
Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей. Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:
Обозначение | Тип подключения | Потери мощности |
127/220 | «звезда» | 30% |
220/380 | «треугольник», «звезда» | 30% |
380/660 | «треугольник» | 70% |
В последнем случае, при подключении трёхфазного двигателя к однофазной цепи потеря составит 2/3 от установленной мощности. Поэтому, моторы, с обозначением 380/660 запитывать от 220 вольт, хотя и возможно, но абсолютно нецелесообразно. Для подключения двигателя к однофазной цепи используются два варианта:
- С помощью преобразователя частот. Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
- Посредством конденсатора. Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.
Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.
Всего в схеме присутствуют два их типа: С1 – пусковой, и С2 – рабочий. Номинальное напряжение у каждого из них должно быть не менее 300В. В идеале, лучше взять устройства с ещё большим показателем – свыше 350В. В продаже можно встретить конденсаторы, специально предназначаемые для запуска электродвигателя. Они имеют соответствующее обозначение, и использовать их как рабочие запрещено. Минимально необходимая ёмкость конденсаторов зависит от мощности электродвигателя, и показана в таблице в микрофарадах:
Мощность двигателя | 0,4 кВт | 0,6 кВт | 0,8 кВт | 1,1 кВт | 1,5 кВт | 2,2 кВт |
Ёмкость С1 (пускового) в номинальном режиме | 80 | 120 | 160 | 200 | 250 | 300 |
Ёмкость С1 (пускового) в недогруженном режиме | 20 | 35 | 45 | 60 | 80 | 100 |
Ёмкость С2 (рабочего) в номинальном режиме | 40 | 60 | 80 | 100 | 150 | 230 |
Ёмкость С2 (рабочего) в недогруженном режиме | 25 | 40 | 60 | 80 | 130 | 200 |
Сама схема подключения трёхфазных электродвигателей с использованием конденсаторов, как в варианте «звезды», так и «треугольника», будет выглядеть весьма просто:
Для управления пусковым конденсатором, предназначенного для страгивания с места и разгона 3-х фазного двигателя, используют выключатель. На схеме, представленной выше, он обозначен словом «Разгон». После набора мотором необходимых оборотов и выхода его на рабочий режим, кнопка управления отключается. При наличии достаточных навыков в обращении с электротехникой, ручное управление можно заменить на автоматическое реле, либо на таймер отключения.
Постепенный разгон
Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.
Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.
Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.
Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)
Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.
Сходство и различие контакторов и пускателей
Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.
Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.
Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.
Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.
Как работает пускатель
Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.
В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.
Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.
Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.
Сеть на 220 вольт
При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.
Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.
Кнопки «пуск» и «стоп»
При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.
Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.
На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.
Трехфазная сеть на 380 В
При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль». Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия). Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц), – при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях), – при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя, дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте. На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.
Продвигаемся к кнопочному посту
На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.
Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»
Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.
Перемычка между пусковой и стоповой кнопкой необходима
Продолжаем подключение кнопочного поста
Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.
Соединение на пусковой кнопке — работа с постом практически завершена
Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.
Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя
Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.
Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя